\[\begin{aligned} \mathcal L &= T(q, \dot q) - V(q) \\ \end{aligned} \tag{1}\] \[\begin{aligned} J(q, \dot q) &= \int_{t_1}^{t_2} \mathcal L(q, \dot q) \, dt \\ \end{aligned} \tag{2}\] \[\begin{aligned} x & \triangleq [q^T, \dot q^T]^T \\ \dot q = \begin{bmatrix} 0 & I \\ \end{bmatrix} x \\ \end{aligned} \tag{3}\] \[\begin{aligned} J_a(x) &= \int_{t_1}^{t_2} \mathcal L(x) + p^T (A x - B\dot x) \, dt \\ A & \triangleq \begin{bmatrix} 0 & I \\ \end{bmatrix}_{n \times 2n} \\ B & \triangleq \begin{bmatrix} I & 0 \\ \end{bmatrix}_{n \times 2n} \\ \end{aligned} \tag{4}\] \[\begin{aligned} \mathcal{H} = \mathcal L + p^T A x \\ \end{aligned} \tag{5}\] \[\begin{aligned} \dot p &= -\frac{\partial \mathcal H}{\partial x} \\ &= -\frac{\partial \mathcal L}{\partial x} - A^T p \\ \begin{bmatrix} \dot p_1 \\ \dot p_2 \end{bmatrix}&= -\begin{bmatrix} \frac{\partial \mathcal L}{\partial q} \\ \frac{\partial \mathcal L}{\partial \dot q} \end{bmatrix} - \begin{bmatrix} 0 \\ p_1 \end{bmatrix} \\ \end{aligned} \tag{6}\]
<
Previous Post
连续系统的LQR轨迹跟踪问题
>
Blog Archive
Archive of all previous blog posts